

FEA NX Simulation Platform

Integration of MIDAS GEN and FEA NX Series Structural Element Detailed Analysis (Simplified Approach)

CASE ANALYSIS OVERVIEW

Part 0 GEN Simulation and Results

MIDAS GEN MODEL and RESULTS

Warehouse Frame Example

- Retrieve setting file from your MIDAS Gen Installation Folder
- Local Disk (C:) > Program Files > MIDAS > Midas Gen > Tutorial > Tut2

CASE ANALYSIS 1: GEN Tutorial 2 Example

Isolating the element (beam)

- Highlight the beam
- Use Active

Extracting the element (beam)

Export > FrameSection For Solid > Object Elements > Highlight the Elements

MIDAS GEN MODEL and RESULTS

Part 1 Solid Steel Structure

IMPORTED FILE

Importing to FEA NX

- Frame to Solid
- Select Midas Section File
- Choose File
- Choose OK

NOTE:

File Type : (.mcs)

IMPORTED FILE

MATERIALS AND PROPERTIES

NOTE:

Material Parameters are modifiable.

MESHING

MESHING

NOTE:

The smaller the mesh, the more accurate the results are.

CONSTRAINT:

Pinned support on the joint

Seepage Cut Off

RIGID LINK

STEP 1: CREATE A MASTER NODE

Seepage Flow DOF

Temperature

RIGID LINK

NOTE: After establishing the rigid link, you can apply the internal forces on the master node.

ANALYSIS CASE

RESULTS - Beam Stress Comparison

MIDAS GEN Analysis in between two nodes: Linear Interpolation

RESULTS - Beam Deformation

Deformation

RESULTS - STRESS VON MISES

RESULTS - Beam Strains Normal

Part 2 Modified Steel Structure

IMPORTED FILE

MODIFYING BEAM ELEMENT

(Sample Case: There are holes in the beam)

- 1. Create a circle face
- 2. Extrude to make a cylinder
- 3. Cut Solid

MESHING

MESHING

the results are.

CONSTRAINT:

Pinned support on the joint

RIGID LINK-BEAM END FOR LOADING

STEP 1: CREATE A MASTER NODE

RIGID LINK-BEAM END FOR LOADING

STEP 3: DEFINE RIGID LINK

RIGID LINK-CREATE LINKS FOR HOLES

NOTE: This is to define the rigid link of the surface surrounding the hole which would ensure its rigid movement.

NOTE: Define the rigid link 1 by 1 (per hole).

ANALYSIS CASE

Part 3

Solid and Modified Beam Result Comparison

RESULTS - BEAM DEFLECTION COMPARISON

Max S-YY: ~93% increase

Primary region S-YY: 5x increase

Compression Region: 0.8% --> 11.6%

Max S-ZZ: ~93% increase

Primary region S-ZZ: 5x increase

Compression Region: 0.13% --> 11.1%

Max S-Von mises: ~85.2% increase

Max S-Von mises: Created high stress points near the hole, about 2x increase

FEA NX Simulation Platform

Integration of MIDAS GEN and FEA NX Series Structural Element Detailed Analysis (Full Frame Approach)

CASE ANALYSIS OVERVIEW

3D ANALYSIS OF A BEAM ELEMENT FROM A 1D FRAME

Part 0

GEN Simulation and Results

MIDAS GEN MODEL and RESULTS

Part 1

Frame Detailed Analysis

FRAME GUIDE

Node	X(m)	Y(m)	Z(m)
1	0.000000	0.000000	0.000000
2	0.000000	0.000000	9.000000
3	20.000000	0.000000	0.000000
4	20.000000	0.000000	9.000000
5	10.000000	0.000000	0.000000
6	10.000000	0.000000	9.000000
7	2.500000	0.000000	9.000000
8	5.000000	0.000000	9.000000
9	7.500000	0.000000	9.000000
10	12.500000	0.000000	9.000000
11	15.000000	0.000000	9.000000
12	17.500000	0.000000	9.000000
13	2.500000	0.000000	9.438107
14	5.000000	0.000000	9.876214
15	7.500000	0.000000	10.314321
16	10.000000	0.000000	10.752427
17	12.500000	0.000000	10.314321
18	15.000000	0.000000	9.876214
19	17.500000	0.000000	9.438107
20	0.000000	0.000000	3.000000
21	10.000000	0.000000	3.000000
22	0.000000	0.000000	6.000000
23	10.000000	0.000000	6.000000

FRAME GUIDE

NOTE:

Extract the nodes from GEN and import it to FEA. This will create guidepoints to construct the frame. Then add the other elements to create the entire **1D structure**.

ADDITIONAL GEOMETRY (3D)

ADDITIONAL GEOMETRY (3D)

ADDITIONAL GEOMETRY (3D)

FRAME GUIDE

NOTE: Translate the 3D beam to the point where detailed analysis is to be done then reorient using rotate function.

MATERIALS AND PROPERTIES

NOTE:

Material Parameters are modifiable.

MATERIALS AND PROPERTIES

MATERIALS AND PROPERTIES

For 1D elements, the beam section database is recommended.

Take note of the following:

- 1. 1D Type
- 2. Material
- 3. Section
 - Standard
 - Section Shape

Additional Note:

If the section is not within the database, **Complex Section Function** is encouraged.

MESHING (1D and 3D)

For **1D elements**, define the appropriate section property.

NOTE: Ensure that the geometry lines are divided into the correct intersections.

For **3D** elements, define the mesh size with the appropriate materials.

NOTE:

- 1. For future GEN export, use Tetra Mesher as mesh type
- 2. Deselect Merge nodes to create a segmented parts of the truss.

MODEL

RIGID LINKS

Define a rigid body in the property to create a rigid link. NOTE: No material definition needed for rigid body.

RIGID LINKS

VIRTUAL BEAM

STEPS:

- 1. Select mesh set.
- 2. Create a line along the geometric center of the mesh.
- 3. Choose the proper orentation.

LOADS and CONSTRAINTS

NOTE: Set constraint on the column to be fixed

NOTE:

- 1. Initially, set to simplest load case (self weight)
- 2. Set constraint on the column base to be fixed (DOF: Txyz, Rxyz)

ANALYSIS CASE

NOTE:

- 1. Include all the necessary meshes, constraints, and loads.
- 2. In the output control, include in the output the strain results since the analysis includes a 3D element.

RESULTS - DISPLACEMENT

RESULTS - 1D AXIAL FORCES

RESULTS - 3D STRESS VON MISES

Part 2

Modified Frame Detailed Analysis

GEOMETRY

MODIFYING BEAM ELEMENT

(Sample Case: There are holes in the beam)

- 1. Create a circle face
- 2. Extrude to make a cylinder
- 3. Cut Solid
- 4. Repeat to all concerned elements

MESHING (1D and 3D)

For **1D elements**, define the appropriate section property.

NOTE: Ensure that the geometry lines are divided into the correct intersections.

For **3D** elements, define the mesh size with the appropriate materials.

NOTE:

- 1. For future GEN export, use Tetra Mesher as mesh type
- 2. Deselect Merge nodes to create a segmented parts of the truss.

MODEL

RIGID LINKS

Define a rigid body in the property to create a rigid link. NOTE: No material definition needed for rigid body.

RIGID LINKS

RIGID LINK

NOTE: Define the rigid link 1 by 1 (per hole).

STEPS:

- 1. Define the master node in the center of the holes.
- 2. Link the edge of the hole to the master node.

VIRTUAL BEAM

STEPS:

- 1. Select mesh set.
- 2. Create a line (end-to-end) along the geometric center of the mesh.
- 3. Choose the proper orentation.

LOADS and CONSTRAINTS

NOTE: Set constraint on the column to be fixed

NOTE:

- 1. Initially, set to simplest load case (self weight)
- 2. Set constraint on the column base to be fixed (DOF: Txyz, Rxyz)

ANALYSIS CASE

NOTE:

- 1. Include all the necessary meshes, constraints, and loads.
- 2. In the output control, include in the output the strain results since the analysis includes a 3D element.

RESULT COMPARISON - DISPLACEMENT

STANDARD

Overall, there is a small difference between the displacement after modifying the beams.

RESULT COMPARISON - STRESS VON MISES

STANDARD

SOLID STRESS 5-XX , N/mm^2 +4.99354e+00 -+4.20853e+00 0.2% ---+3.42352e+00 3,3% -+2.63851e+00 13.3% ---+1.85351e+00 10.3% ---+1.06850e+00 29.5% -+2.83487e-01 --5.01522e-01 14.1% -2.07154e+00 -2.85655e+00 -3.64156e+00

-4.42657e+00

The modification created an S-XX increase of 13%

- 60% on the hole areas.

RESULT COMPARISON - STRESS MAX SHEAR

STANDARD

SOLID STRESS S-MAX SHEAR , N/mm^2 +2.23201e+00 +2.04601e+00 -+1.86001e+00 0.7% ---+1.67401e+00 1.9% ---+1.48801e+00 4.8% ---+1.30201e+00 11.6% ---+1.11601e+00 -+9.30005e-01 -+7.44004e-01 10.1% -+5.58003e-01 ---+3.72002e-01 -+1.86001e-01 -+0.00000e+00

The modification created a max shear decrease in the midspan by 17%.

RESULT COMPARISON - STRESS VON MISES

STANDARD

+0.00000e+00

The modification created a stress von mises decrease in the midspan by 22.2%.

RESULT COMPARISON - AXIAL X (Fx)

RESULT COMPARISON - AXIAL Z (Fz)

RESULT COMPARISON - MOMENT Y (My)

RESULT COMPARISON - STRESS VON MISES

Part 3 Load Applications

LOAD

Dead Load

Live Load

Slab = -0.4 tonf/m

Slab = -0.7 tonf/m

Roof Girder = -0.1 tonf/m Roof Girder = -0.1 tonf/m

Purlins = -1.3 tonf/m

Purlins = -1.0 tonf/m

Side Truss = -0.1 tonf/m

Side Truss = -0.1 tonf/m

Wind Load

Additional Load (Uniform Load front Truss)

Wx = 0.88 tonf/m

Uniform load = 2 tonf/m

Wy = 0.92 tonf

DEAD LOAD - SLAB

DEAD LOAD - ROOF GIRDER

DEAD LOAD - PURLINS

DEAD LOAD - SIDE TRUSS

LIVE LOAD - SLAB

LIVE LOAD - ROOF LOAD

LIVE LOAD - PURLINS

LIVE LOAD - SIDE TRUSS

WIND LOAD Wx

WIND LOAD Wy

1D LOADING

3D LOADING

RESULT COMPARISON

RESULT COMPARISON

RESULT COMPARISON

MIDAS